Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.

Identifieur interne : 000D62 ( Main/Exploration ); précédent : 000D61; suivant : 000D63

Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.

Auteurs : Shu-Chuan Jao [États-Unis] ; Susan M. English Ospina ; Anthony J. Berdis ; David W. Starke ; Carol Beth Post ; John J. Mieyal

Source :

RBID : pubmed:16605247

Descripteurs français

English descriptors

Abstract

Human glutaredoxin (GRx), also known as thioltransferase, is a 12 kDa thiol-disulfide oxidoreductase that is highly selective for reduction of glutathione-containing mixed disulfides. The apparent pK(a) for the active site Cys22 residue is approximately 3.5. Previously we observed that the catalytic enhancement by glutaredoxin could be ascribed fully to the difference between the pK(a) of its Cys22 thiol moiety and the pK(a) of the product thiol, each acting as a leaving group in the enzymatic and nonenzymatic reactions, respectively [Srinivasan et al. (1997), Biochemistry 36, 3199-3206]. Continuum electrostatic calculations suggest that the low pK(a) of Cys22 results primarily from stabilization of the thiolate anion by a specific ion-pairing with the positively charged Lys19 residue, although hydrogen bonding interactions with Thr21 also appear to contribute. Variants of Lys19 were considered to further assess the predicted role of Lys19 on the pK(a) of Cys22. The variants K19Q and K19L were generated by molecular modeling, and the pK(a) value for Cys22 was calculated for each variant. For K19Q, the predicted Cys22 pK(a) is 7.3, while the predicted value is 8.3 for K19L. The effects of the mutations on the interaction energy between the adducted glutathionyl moiety and GRx were roughly estimated from the van der Waals and electrostatic energies between the glutathionyl moiety and proximal protein residues in a mixed disulfide adduct of GRx and glutathione, i.e., the GRx-SSG intermediate. The values for the K19 mutants differed by only a small amount compared to those for the wild type enzyme intermediate. Together, the computational analysis predicted that the mutant enzymes would have markedly reduced catalytic rates while retaining the glutathionyl specificity displayed by the wild type enzyme. Accordingly, we constructed and characterized the K19L and K19Q mutants of two forms of the GRx enzyme. Each of the mutants retained glutathionyl specificity as predicted and displayed diminution in activity, but the decreases in activity were not to the extent predicted by the theoretical calculations. Changes in the respective Cys22-thiol pK(a) values of the mutant enzymes, as shown by pH profiles for iodoacetamide inactivation of the respective enzymes, clearly revealed that the K19-C22 ion pair cannot fully account for the low pK(a) of the Cys22 thiol. Additional contributions to stabilization of the Cys22 thiolate are likely donated by Thr21 and the N-terminal partial positive charge of the neighboring alpha-helix.

DOI: 10.1021/bi0516327
PubMed: 16605247


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.</title>
<author>
<name sortKey="Jao, Shu Chuan" sort="Jao, Shu Chuan" uniqKey="Jao S" first="Shu-Chuan" last="Jao">Shu-Chuan Jao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333</wicri:regionArea>
<wicri:noRegion>Indiana 47907-1333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="English Ospina, Susan M" sort="English Ospina, Susan M" uniqKey="English Ospina S" first="Susan M" last="English Ospina">Susan M. English Ospina</name>
</author>
<author>
<name sortKey="Berdis, Anthony J" sort="Berdis, Anthony J" uniqKey="Berdis A" first="Anthony J" last="Berdis">Anthony J. Berdis</name>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</author>
<author>
<name sortKey="Post, Carol Beth" sort="Post, Carol Beth" uniqKey="Post C" first="Carol Beth" last="Post">Carol Beth Post</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16605247</idno>
<idno type="pmid">16605247</idno>
<idno type="doi">10.1021/bi0516327</idno>
<idno type="wicri:Area/Main/Corpus">000D55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D55</idno>
<idno type="wicri:Area/Main/Curation">000D55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D55</idno>
<idno type="wicri:Area/Main/Exploration">000D55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.</title>
<author>
<name sortKey="Jao, Shu Chuan" sort="Jao, Shu Chuan" uniqKey="Jao S" first="Shu-Chuan" last="Jao">Shu-Chuan Jao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333</wicri:regionArea>
<wicri:noRegion>Indiana 47907-1333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="English Ospina, Susan M" sort="English Ospina, Susan M" uniqKey="English Ospina S" first="Susan M" last="English Ospina">Susan M. English Ospina</name>
</author>
<author>
<name sortKey="Berdis, Anthony J" sort="Berdis, Anthony J" uniqKey="Berdis A" first="Anthony J" last="Berdis">Anthony J. Berdis</name>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</author>
<author>
<name sortKey="Post, Carol Beth" sort="Post, Carol Beth" uniqKey="Post C" first="Carol Beth" last="Post">Carol Beth Post</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Cysteine (chemistry)</term>
<term>Cysteine (genetics)</term>
<term>Cysteine (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione Disulfide (chemistry)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (methods)</term>
<term>Mutation (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Static Electricity (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Cystéine (génétique)</term>
<term>Cystéine (métabolisme)</term>
<term>Disulfure de glutathion (composition chimique)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mutagenèse dirigée (méthodes)</term>
<term>Mutation (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
<term>Électricité statique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Glutathione Disulfide</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Glutathione Disulfide</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Disulfure de glutathion</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cystéine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Mutagenesis, Site-Directed</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Disulfure de glutathion</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
<term>Mutagenèse dirigée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Catalysis</term>
<term>Glutaredoxins</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Sequence Alignment</term>
<term>Static Electricity</term>
<term>Substrate Specificity</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Animaux</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Données de séquences moléculaires</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Mutation</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
<term>Thermodynamique</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human glutaredoxin (GRx), also known as thioltransferase, is a 12 kDa thiol-disulfide oxidoreductase that is highly selective for reduction of glutathione-containing mixed disulfides. The apparent pK(a) for the active site Cys22 residue is approximately 3.5. Previously we observed that the catalytic enhancement by glutaredoxin could be ascribed fully to the difference between the pK(a) of its Cys22 thiol moiety and the pK(a) of the product thiol, each acting as a leaving group in the enzymatic and nonenzymatic reactions, respectively [Srinivasan et al. (1997), Biochemistry 36, 3199-3206]. Continuum electrostatic calculations suggest that the low pK(a) of Cys22 results primarily from stabilization of the thiolate anion by a specific ion-pairing with the positively charged Lys19 residue, although hydrogen bonding interactions with Thr21 also appear to contribute. Variants of Lys19 were considered to further assess the predicted role of Lys19 on the pK(a) of Cys22. The variants K19Q and K19L were generated by molecular modeling, and the pK(a) value for Cys22 was calculated for each variant. For K19Q, the predicted Cys22 pK(a) is 7.3, while the predicted value is 8.3 for K19L. The effects of the mutations on the interaction energy between the adducted glutathionyl moiety and GRx were roughly estimated from the van der Waals and electrostatic energies between the glutathionyl moiety and proximal protein residues in a mixed disulfide adduct of GRx and glutathione, i.e., the GRx-SSG intermediate. The values for the K19 mutants differed by only a small amount compared to those for the wild type enzyme intermediate. Together, the computational analysis predicted that the mutant enzymes would have markedly reduced catalytic rates while retaining the glutathionyl specificity displayed by the wild type enzyme. Accordingly, we constructed and characterized the K19L and K19Q mutants of two forms of the GRx enzyme. Each of the mutants retained glutathionyl specificity as predicted and displayed diminution in activity, but the decreases in activity were not to the extent predicted by the theoretical calculations. Changes in the respective Cys22-thiol pK(a) values of the mutant enzymes, as shown by pH profiles for iodoacetamide inactivation of the respective enzymes, clearly revealed that the K19-C22 ion pair cannot fully account for the low pK(a) of the Cys22 thiol. Additional contributions to stabilization of the Cys22 thiolate are likely donated by Thr21 and the N-terminal partial positive charge of the neighboring alpha-helix.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16605247</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>45</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2006</Year>
<Month>Apr</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.</ArticleTitle>
<Pagination>
<MedlinePgn>4785-96</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Human glutaredoxin (GRx), also known as thioltransferase, is a 12 kDa thiol-disulfide oxidoreductase that is highly selective for reduction of glutathione-containing mixed disulfides. The apparent pK(a) for the active site Cys22 residue is approximately 3.5. Previously we observed that the catalytic enhancement by glutaredoxin could be ascribed fully to the difference between the pK(a) of its Cys22 thiol moiety and the pK(a) of the product thiol, each acting as a leaving group in the enzymatic and nonenzymatic reactions, respectively [Srinivasan et al. (1997), Biochemistry 36, 3199-3206]. Continuum electrostatic calculations suggest that the low pK(a) of Cys22 results primarily from stabilization of the thiolate anion by a specific ion-pairing with the positively charged Lys19 residue, although hydrogen bonding interactions with Thr21 also appear to contribute. Variants of Lys19 were considered to further assess the predicted role of Lys19 on the pK(a) of Cys22. The variants K19Q and K19L were generated by molecular modeling, and the pK(a) value for Cys22 was calculated for each variant. For K19Q, the predicted Cys22 pK(a) is 7.3, while the predicted value is 8.3 for K19L. The effects of the mutations on the interaction energy between the adducted glutathionyl moiety and GRx were roughly estimated from the van der Waals and electrostatic energies between the glutathionyl moiety and proximal protein residues in a mixed disulfide adduct of GRx and glutathione, i.e., the GRx-SSG intermediate. The values for the K19 mutants differed by only a small amount compared to those for the wild type enzyme intermediate. Together, the computational analysis predicted that the mutant enzymes would have markedly reduced catalytic rates while retaining the glutathionyl specificity displayed by the wild type enzyme. Accordingly, we constructed and characterized the K19L and K19Q mutants of two forms of the GRx enzyme. Each of the mutants retained glutathionyl specificity as predicted and displayed diminution in activity, but the decreases in activity were not to the extent predicted by the theoretical calculations. Changes in the respective Cys22-thiol pK(a) values of the mutant enzymes, as shown by pH profiles for iodoacetamide inactivation of the respective enzymes, clearly revealed that the K19-C22 ion pair cannot fully account for the low pK(a) of the Cys22 thiol. Additional contributions to stabilization of the Cys22 thiolate are likely donated by Thr21 and the N-terminal partial positive charge of the neighboring alpha-helix.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jao</LastName>
<ForeName>Shu-Chuan</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>English Ospina</LastName>
<ForeName>Susan M</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berdis</LastName>
<ForeName>Anthony J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Starke</LastName>
<ForeName>David W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Post</LastName>
<ForeName>Carol Beth</ForeName>
<Initials>CB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1B4Q</AccessionNumber>
<AccessionNumber>1JHB</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01-AG15885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-AG 024413</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16605247</ArticleId>
<ArticleId IdType="doi">10.1021/bi0516327</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Berdis, Anthony J" sort="Berdis, Anthony J" uniqKey="Berdis A" first="Anthony J" last="Berdis">Anthony J. Berdis</name>
<name sortKey="English Ospina, Susan M" sort="English Ospina, Susan M" uniqKey="English Ospina S" first="Susan M" last="English Ospina">Susan M. English Ospina</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<name sortKey="Post, Carol Beth" sort="Post, Carol Beth" uniqKey="Post C" first="Carol Beth" last="Post">Carol Beth Post</name>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Jao, Shu Chuan" sort="Jao, Shu Chuan" uniqKey="Jao S" first="Shu-Chuan" last="Jao">Shu-Chuan Jao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16605247
   |texte=   Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16605247" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020